Current Transducer HAIS 50 .. 400-P and HAIS 50 .. 100-TP

For the electronic measurement of currents : DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

All Data are given with a $R_1 = 10 \text{ k}\Omega$

	ectrical data			
Primary r.m.s.	rnominal Primary current current measuring range		Туре	
ا _{PN}	(A) $I_{p}(A)$	ЦЛ		S 50-TD1)
100) <u>±150</u>) +300	HAIS	100-P. HAIS	100-TP ¹⁾
150) ±450		HA	IS 150-P
200 ±600			HA	IS 200-P
400) ±600		HA	IS 400-P
V _{OUT}	Analog output voltage @ I _P		V _{REF} ±(0.625	5·I _P /I _{PN}) V
	$I_{\rm P} = 0$		$V_{\text{REF}} \pm 0.02$	5 V
V_{ref}	Internal Reference ²⁾ - Output voltage		2.5 ± 0.025	i V
	V _{REF} Output impedance	typ.	200	Ω
	V _{REF} Load impedance		≥ 200	kΩ
R	Output load resistance		≥ 2	kΩ
R _{out}	Output impedance		< 10	Ω
C	Max. output capacitive load		< 1	μF
V _c	Supply voltage (± 5 %)		5	V
I _c	Current consumption @ $V_c = 5 V$		22	mA
Ac	curacy - Dynamic performance data			
Х	Accuracy ³⁾ $(\mathbf{I}_{PN}, \mathbf{T}_{A} = 25^{\circ}C$		≤±1	% of I _{PN}
e	Linearity 0 3 x I _{PN}		≤ ± 0.5	% of I _{PN}
TCV	Thermal drift of $\mathbf{V}_{\text{OUT}} @ \mathbf{I}_{\text{P}} = 0$		≤ ± 0.3	mV/K
	Thermal drift of V_{REF}		≤±0.01	%/K
TCV	$/\mathbf{V}_{\text{REF}}$ Thermal drift of $\overline{\mathbf{V}}_{\text{OUT}}/\mathbf{V}_{\text{REF}} @ \mathbf{I}_{\text{P}} = 0$		≤±0.2	mV/K
TC e _G	Thermal drift of the gain		≤±0.05% of	reading/K
Vom	Residual voltage @ $I_p = 0$, after an overload of 3 x I_{parts}		<±0.4	% of $I_{_{\rm PN}}$
t	Reaction time @ 10 % of I		< 3	μs
t	Response time @ 90 % of I _{PN}		< 5	μs
di/dt	di/dt accurately followed		> 100	A/µs
	Output noise (DC10 kHz)		< 15	mVpp
	(DC 1 MHz)		< 40	mVpp
f	Frequency bandwidth (-3 dB) ⁴⁾		DC 50	kHz
Ge	eneral data			
T,	Ambient operating temperature		- 40 + 85	°C
Т,	Ambient storage temperature		- 40 + 85	°C
dČp	Creepage distance		> 8	mm
dCl	Clearance distance		> 8	mm
СТІ	Comparative tracking index (Group I)		> 600	V
	UL94 classification		V0	
m	Mass (in brackets : TP version)		20(30)	g

$I_{PN} = 50 ... 400 A$

Features

- Hall effect measuring principle
- Galvanic isolation between primary and secondary circuit
- Isolation test voltage 2500V
- Low power consumption
- Single power supply +5V
- Fixed offset & gain
- Bus bar version available for 50A and 100A ratings.

Advantages

- Small size and space saving
- Only one design for wide current ratings range
- High immunity to external interference.
- V_{REF.} IN/OUT

Applications

EN 50178 (97-10-01)

- AC variable speed drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Standards

Current Transducer HAIS 50 .. 400-P and HAIS 50 .. 100-TP

Insulation category						
V _b	Nominal Voltage with IEC 61010-1 standards and following conditions - Single insulation	300	V r.m.s.			
	- Over voltage category III					
	- Pollution degree 2					
	- Heterogeneous field					
V _b	Nominal Voltage	600	V r.m.s.			
	with EN 50178 standards and following conditions					
	- Reinforced insulation					
	- Over voltage category III					
	- Pollution degree 2					
	- Heterogeneous field					
V _d	R.m.s. voltage for AC isolation test, 50/60 Hz, 1 mn		KV			
V _e	R.m.s. voltage for partial discharge extinction @ 10pt	ر د .				
			K V			
v	HAIS 50100-11	> > 1.4				
v _w	Impulse withstand voltage 1.2/50µs	0	ĸv			
	If insulated cable is used for the primary circuit, the					
	voltage category could be improved with the following table :					
	Cable insulation (primary) Category					
	HAR 03 450V CAT III					
	HAR 05 550V CAT III					
	HAR 07 650V CAT III					

<u>Notes</u> : ¹⁾-TP version is equipped with a primary bus bar.

 $^{\rm 2)}\,\text{It}$ is possible to overdrive $\boldsymbol{V}_{\text{\tiny REF}}$ with an external reference voltage between 2 - 2.8 V providing its ability to sink or source approximately 2.5 mA.

³⁾Excluding offset and hysteresis.

⁴⁾Small signal only to avoid excessive heatings of the magnetic core.

Safety :	This transducer shall be used in accordance with manufacturer instruction. The temperature of the primary conductor shall not exceed 100°C Power supply shall be a low voltage source and shall have an efficient
Caution, risk of danger	protective system against over current. Power supply must incorporate a circuit breaker. This transducer shall be used in an electric/electronic equipment in respect of standards rules and applicable safety requirements. Primary bar and output terminals can provide hazardous voltage. This transducer is a built in device, of which conducting parts must be inaccessible by installation. Protective envelope or additional shield must be used.

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.