Sensitive Gate Silicon Controlled Rectifiers Reverse Blocking Thyristors

Glassivated PNPN devices designed for high volume consumer applications such as temperature, light, and speed control; process and remote control, and warning systems where reliability of operation is important.

Features

- Glassivated Surface for Reliability and Uniformity
- Power Rated at Economical Prices
- Practical Level Triggering and Holding Characteristics
- Flat, Rugged, Thermopad Construction for Low Thermal Resistance, High Heat Dissipation and Durability
- Sensitive Gate Triggering
- These are Pb-Free Devices

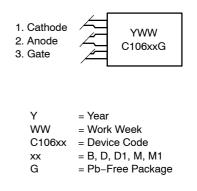
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

		-	
Characteristic	Symbol	Мах	Unit
Peak Repetitive Off–State Voltage (Note 1) (Sine Wave, 50–60 Hz, $R_{GK} = 1 k\Omega$, $T_{C} = -40^{\circ}$ to 110°C)	V _{DRM,} V _{RRM}		V
C106B C106D, C106D1* C106M, C106M1*		200 400 600	
On-State RMS Current (180° Conduction Angles, T _C = 80°C)	I _{T(RMS)}	4.0	A
Average On-State Current (180° Conduction Angles, T _C = 80°C)	I _{T(AV)}	2.55	A
Peak Non-Repetitive Surge Current (1/2 Cycle, Sine Wave, 60 Hz, T _J = +25°C)	I _{TSM}	20	A
Circuit Fusing Considerations (t = 8.3 ms)	l ² t	1.65	A ² s
Forward Peak Gate Power (Pulse Width \leq 1.0 µsec, T _C = 80°C)	P _{GM}	0.5	W
Forward Average Gate Power (Pulse Width \leq 1.0 μ sec, T _C = 80°C)	P _{G(AV)}	0.1	W
Forward Peak Gate Current (Pulse Width \leq 1.0 μ sec, T _C = 80°C)	I _{GM}	0.2	A
Operating Junction Temperature Range	ТJ	−40 to +110	°C
Storage Temperature Range	T _{stg}	−40 to +150	°C
Mounting Torque (Note 2)	-	6.0	in. lb.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.
- Torque rating applies with use of compression washer (B52200F006). Mounting torque in excess of 6 in. lb. does not appreciably lower case-to-sink thermal resistance. Anode lead and heatsink contact pad are common.

ON Semiconductor®


http://onsemi.com

SCRs 4 A RMS. 200 – 600 Volts

MARKING DIAGRAM & PIN ASSIGNMENT

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

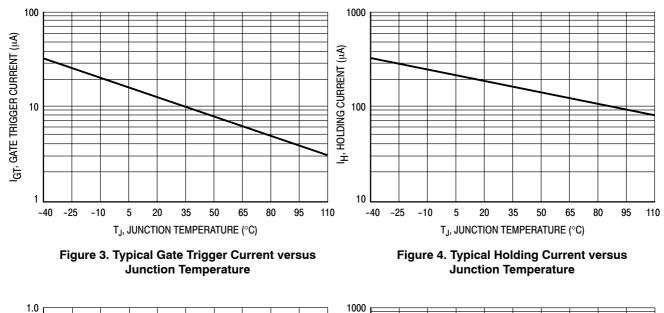
THERMAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	3.0	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	75	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8 in. from Case for 10 Seconds	ΤL	260	°C

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
FF CHARACTERISTICS			•		•	
Peak Repetitive Forward or Reverse Blocking Current (V_{AK} = Rated V_{DRM} or V_{RRM} , R_{GK} = 1 k Ω)	T _J = 25°C T _J = 110°C	I _{DRM} , I _{RRM}		_	10 100	μΑ μΑ
N CHARACTERISTICS						
Peak Forward On-State Voltage (Note 3) (I _{TM} = 4 A)		V _{TM}	_	_	2.2	V
Gate Trigger Current (Continuous dc) (Note 4) $(V_{AK} = 6 \text{ Vdc}, R_L = 100 \Omega)$	$T_J = 25^{\circ}C$ $T_J = -40^{\circ}C$	I _{GT}		15 35	200 500	μΑ
Peak Reverse Gate Voltage (I_{GR} = 10 μ A)		V _{GRM}	-	-	6.0	V
Gate Trigger Voltage (Continuous dc) (Note 4) $(V_{AK} = 6 \text{ Vdc}, R_L = 100 \Omega)$	$T_J = 25^{\circ}C$ $T_J = -40^{\circ}C$	V _{GT}	0.4 0.5	0.60 0.75	0.8 1.0	V
Gate Non–Trigger Voltage (Continuous dc) (Note 4) $(V_{AK} = 12 \text{ V}, \text{ R}_L = 100 \Omega, \text{ T}_J = 110^{\circ}\text{C})$		V _{GD}	0.2	_	_	V
Latching Current (V _{AK} = 12 V, I _G = 20 mA, R _{GK} = 1 k Ω)	$T_J = 25^{\circ}C$ $T_J = -40^{\circ}C$	ΙL		0.20 0.35	5.0 7.0	mA
Holding Current (V _D = 12 Vdc) (Initiating Current = 20 mA, R_{GK} = 1 k Ω)	T _J = 25°C T _J = -40°C T _J = +110°C	Ι _Η	- - -	0.19 0.33 0.07	3.0 6.0 2.0	mA

Critical Rate-of-Rise of Off-State Voltage	dv/dt	-	8.0	-	V/μs
(V _{AK} = Rated V _{DRM} , Exponential Waveform, R_{GK} = 1 k Ω ,					
T _J = 110°C)					

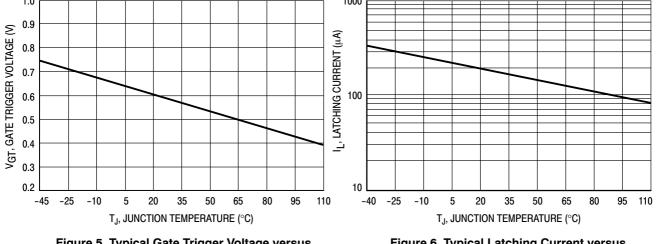
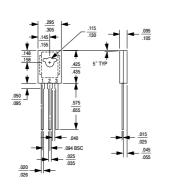

Voltage Current Characteristic of SCR

+ Current

Anode +

		Τ.Ι.
Symbol	Parameter	
	Peak Repetitive Off State Forward Voltage	-
DRM	Peak Forward Blocking Current	on state
	Peak Repetitive Off State Reverse Voltage	$I_{\rm RRM}$ at $V_{\rm RRM}$
	Peak Reverse Blocking Current	
V _{TM}	Peak On State Voltage	+ Voltage
I _H	Holding Current	
	5	
		Reverse Avalanche Region
		Anode – 🛛 🔻
110		ົຼ ອ ¹⁰ JUNCTION TEMPERATURE ≈ 110°C
90 80	DC	8 HALF SINE WAVE RESISTIVE OR INDUCTIVE LOAD
90 80 70	DC	8 HALF SINE WAVE RESISTIVE OR INDUCTIVE LOAD 6
90 80 70 60	DC	8 HALF SINE WAVE 6 50 TO 400Hz.
90 80 70 60 50		8 HALF SINE WAVE RESISTIVE OR INDUCTIVE LOAD 6 50 TO 400Hz.
90 80 70 60 50 40 HALF RESIS	SINE WAVE STIVE OR INDUCTIVE LOAD.	B B
90 80 70 60 50 40 HALF RESIS	SINE WAVE	8 HALF SINE WAVE RESISTIVE OR INDUCTIVE LOAD 50 TO 400Hz.
90 80 70 60 50 40 HALF RESIS	SINE WAVE STIVE OR INDUCTIVE LOAD.	8 HALF SINE WAVE RESISTIVE OR INDUCTIVE LOAD 50 TO 400Hz.
90 80 70 60 50 40 HALF RESIS 30 -50 to 4	SINE WAVE STIVE OR INDUCTIVE LOAD. 400 Hz	B B HALF SINE WAVE RESISTIVE OR INDUCTIVE LOAD 50 TO 400Hz. DC DC
90 80 70 60 50 40 HALF RESIS 30 50 to 4 20	SINE WAVE STIVE OR INDUCTIVE LOAD. 400 Hz	B C C C
90 80 70 60 50 40 HALF RESIS 30 50 to 4 20 10	SINE WAVE STIVE OR INDUCTIVE LOAD. 400 Hz	Image: String of the string

Figure 1. Average Current Derating

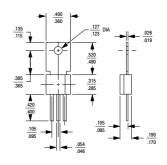

Figure 5. Typical Gate Trigger Voltage versus Junction Temperature

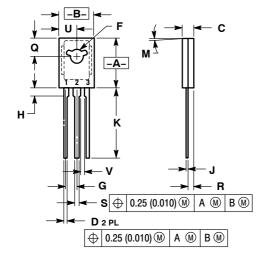
Figure 6. Typical Latching Current versus Junction Temperature

PACKAGE INTERCHANGEABILITY

The dimensional diagrams below compare the critical dimensions of the ON Semiconductor C-106 package with competitive devices. It has been demonstrated that the smaller dimensions of the ON Semiconductor package make it compatible in most lead-mount and chassis-mount applications. The user is advised to compare all critical dimensions for mounting compatibility.

ON Semiconductor C-106 Package

Competitive C-106 Package


ORDERING INFORMATION

Device	Package	Shipping [†]
C106BG	TO-225AA (Pb-Free)	500 Units / Box
C106DG	TO-225AA (Pb-Free)	500 Units / Box
C106D1G*	TO-225AA (Pb-Free)	500 Units / Box
C106MG	TO-225AA (Pb-Free)	500 Units / Box
C106M1G*	TO-225AA (Pb-Free)	500 Units / Box

*D1 signifies European equivalent for D suffix and M1 signifies European equivalent for M suffix.

PACKAGE DIMENSIONS

TO-225 CASE 77-09 **ISSUE Z**

)77-0)77-0	1 Thru -) .	08 0820	LETE, NE	W STANL	
	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.425	0.435	10.80	11.04	
в	0.295	0.305	7.50	7.74	
c	0.095	0.105	2.42	2.66	
D	0.020	0.026	0.51	0.66	
F	0.115	0.130	2.93	3.30	
G	0.094 BSC		2.39 BSC		
Н	0.050	0.095	1.27	2.41	
L	0.015	0.025	0.39	0.63	
Κ	0.575	0.655	14.61	16.63	
Μ	5° TYP		5 ° TYP		
Ø	0.148	0.158	3.76	4.01	
R	0.045	0.065	1.15	1.65	
S	0.025	0.035	0.64	0.88	
U	0.145	0.155	3.69	3.93	
٧	0.040		1.02		

1. DIMENSIONING AND TOLERANCING PER ANSI

CONTROLLING DIMENSION: INCH.

STYLE 2: PIN 1. CATHODE 2. 3. ANODE GATE

NOTES:

2.

Y14 5M 1982

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILIC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILIC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILIC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILIC obsent or any liability nor the rights of others. SCILIC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications are specified to the SCILIC of the S intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative